

Final Report – Pinball Machine
Group 454

Nicholas Drazso, 20826832
Noah MacAskill, 20824705

Jia Sheng Lu, 20823525

MTE 100 and GENE 121

December 3rd, 2019

 II

Summary
 The addition of a pinball machine to the twelfth floor of Claudette Millar Hall was
proposed as a solution to the lack of entertainment options available there. The Scope
section will describe in full detail everything that the complete pinball machine will do. A
discussion of changes made to the constraints and criteria of this project can be found in the
Constraints and Criteria section. All details on the design and creation of the mechanical and
software systems of the pinball machine can be found in the Mechanical Design and
Implementation and the Software Design and Implementation sections respectively. The
Verification section will explain how each of the constraints are met. The Project Plan
section will discuss the distribution of tasks to each group member and compare the initial
project plan to the actual project timeline. Finally, the recommendations section will
present possible improvements and changes to certain mechanical and software designs
that could potentially improve the overall project.

 III

Acknowledgements
This project was possible with specific thanks to 2 members of the teaching team.

Thanks to Nathan Klassen, who helped create a pinball machine layout plan that works with
the limited amount of motors and sensors given. As well, thanks to Ryan Consell, who
helped troubleshoot the coding of the Tetrix Prime standard servo motors. No other help
was received for this project. Also, the code used for RobotC file input/output is
acknowledged to be written by Professor Hulls, to whom we extend our gratitude.

 IV

Table of Contents

Summary .. II

Acknowledgements ... III

List of Tables ... VI

List of Figures ... VII

Introduction ... 1

Scope ... 1

Functionality and Interactions .. 1

Changes in Scope ... 3

Constraints and Criteria .. 3

Constraints .. 3

Criteria .. 5

Mechanical Design and Implementation ... 5

Overall Mechanical Description .. 5

The Frame ... 6
Summary ... 6
Design Considerations ... 6
Manufacturing... 6

Ball Detection System .. 7
Summary ... 7
Design Considerations ... 7
Manufacturing... 8

Ball Release Mechanism ... 8
Summary ... 8
Design Considerations ... 8
Manufacturing... 9

Ball Launching Mechanism ... 9
Summary ... 9
Design Considerations ... 9
Manufacturing... 10

Field Motors .. 10
Summary ... 10
Design Considerations ... 11
Manufacturing... 11

Flippers ... 11
Summary ... 11
Design Considerations ... 12
Manufacturing... 12

Ramps ... 12
Summary ... 12
Design Considerations ... 13
Manufacturing... 14

Playing Field .. 14

 V

Summary ... 14
Design Considerations ... 15
Manufacturing... 15

Software Design and Implementation ... 15

Software Description and Functions ... 15

Tasks ... 16

Data Storage in the Program .. 17

Design Decisions .. 17

Testing... 17

Problems ... 18

Verification .. 19

Dimensional Constraint .. 19

Weight Constraint .. 19

Discarded Constraint - Cost .. 19

Project Plan .. 19

Task Distribution .. 19

Deviations from Project Plan .. 20

Conclusions .. 21

Possible Improvements for Mechanical Design ... 21
Ball Release Mechanism .. 21
Ball Launching Mechanism .. 22
Internal Ramps .. 22
Endzone Ball Management ... 22

Possible Improvements for Software Design ... 23
Using Multiple Tasks ... 23
Player Profile Ranking System ... 23

Appendix A – Project Source Code ... 25

Appendix B1 – flippers Function Flowchart .. 33

Appendix B2 – ultrasonicCheck Function Flowchart ... 34

Appendix B3 – ballCountUpdate Function Flowchart ... 35

Appendix B4 - ballLaunch Function Flowchart ... 36

Appendix B5 – ballRelease Function Flowchart .. 37

Appendix B6 – setFieldMotors Function Flowchart .. 38

Appendix B7 – sortScore Function Flowchart ... 39

 VI

List of Tables
Table 1: Unique Tasks Performed During the Game for Each Game Mode 2
Table 2: Functions .. 15
Table 3: Software Testing .. 18
Table 4: Anticipated vs Actual Task Completion Dates ... 20

 VII

List of Figures
Figure 1: the complete pinball machine .. 1
Figure 2: left flipper in its initial position, right flipper in its raised position 2
Figure 3: internal mechanical system layout ... 6
Figure 4: ball detection system, consisting of the ultrasonic sensor and see-saw 7
Figure 5: ball release mechanism .. 8
Figure 6: ball launching mechanism .. 9
Figure 7: two field motors.. 10
Figure 8: the two LEGO obstacles attached to the field motors (top right and bottom left) . 11
Figure 9: the two flippers on the playing field ... 11
Figure 10: right servo motor and its supports ... 12
Figure 11: ramp leading from ball detection system to ball launching mechanism 13
Figure 12: ramp leading from ball launching mechanism to playing field 13
Figure 13: playing field ... 14
Figure 14: design for improved ball release mechanism ... 22
Figure 15: flippers function flowchart ... 33
Figure 16: ultrasonicCheck function flowchart .. 34
Figure 17: ballCountUpdate function flowchart .. 35
Figure 18: ballLaunch function flowchart .. 36
Figure 19: ballRelease function flowchart ... 37
Figure 20: setFieldMotors function flowchart ... 38
Figure 21: sortScore function flowchart .. 39

 1

Introduction
There is a lack of entertainment options on the twelfth floor of CMH, which is a

problem for the university students who live there and need a convenient source of fun and
stress relieve. Thus, this project’s aim was to create a pinball machine as a convenient
source of entertainment for the residents of the twelfth floor of CMH, so that they can take
a break from studying and have some fun.

Pinball is an arcade game which involves using flippers to flip pinballs up an inclined
playing field and hitting special targets to gain points [1]. The game would end when all the
pinballs on the playing field have fallen past the flippers and into an endzone. The pinball
machine produced in this project is capable of launching pinballs autonomously on to the
playing field, uses elapsed playing time to calculate points, and features two unique game
modes on a space-themed playing field (shown in Figure 1).

Figure 1: the complete pinball machine

Scope
Functionality and Interactions

Upon starting the program, the pinball machine prompts the user to select one of
two game modes – “Classic” or “Balls of Fury” – by pressing the up or down button on the
EV3 brick, respectively. Once a game mode is selected, the current score and number of live
balls is displayed on the EV3 brick screen, and the two field motors on the playing field
starts spinning their attached obstacles at 20% power.

In Classic mode, the ball launching mechanism motor gradually accelerates to 100%
power, and through a series of large gear to small gear connections, turns the flywheel at a

very fast speed. Next, the ball release mechanism motor turns an attached arm 27 upward,
allows one pinball to roll down the ramp towards the ball launching mechanism, and then
turns the arm back down to block the next pinball. The released pinball passes under the

 2

spinning flywheel at the bottom of the ramp and gets launched up a second ramp into the
playing field. The ball launching motor decelerates until it is at 0% power. This marks the
start of the game.

In Balls of Fury mode, the ball launching mechanism motor spins at 100% power for
a long enough duration of time to allow the ball release mechanism motor to release 8
pinballs by turning its arm up and down 8 times. All 8 pinballs are launched into the playing
field, the ball launching motor decelerates, and the game starts.
 During the game, the pinball machine is performing multiple tasks at the same time.
The user is able to control the left and right flippers by pressing their corresponding touch

sensors. Holding a touch sensor turns its corresponding servo motor by 75, which turns the
attached Tetrix beam (the “flipper”) to its raised position. Releasing that touch sensor
returns the flipper to its initial position as seen in Figure 2 below.

Figure 2: left flipper in its initial position, right flipper in its raised position

The ultrasonic sensor is polling for a measurement of 255cm or less than 10 cm,
which results from a pinball falling into the endzone and activating the ball detection system
(described in the Mechanical Design and Implementation section). Once such a
measurement is detected, the number of live balls shown on the display screen is
decremented by 1. To compensate for situations where the ultrasonic sensor only detects
one such measurement for multiple balls or multiple measurements for one ball, the user
may use the up and down buttons on the EV3 brick to manually adjust the number of live
balls displayed on the screen. Pressing the up button increments the live ball count, and
pressing the down button decrements the live ball count.
 There are a few other tasks being performed during the game that differs between
the 2 different game modes, summarized in Table 1 below:

Table 1: Unique Tasks Performed During the Game for Each Game Mode

Classic Mode Balls of Fury Mode

 3

• Every 5 seconds, the score is
incremented by 10

• Every 30 seconds, a new ball will be
launched into the playing field

• Every 30 seconds, the field motors
will both increase 20% in power and
change direction (the speed no
longer increases at the 150 second
mark since it is at 100% power)

• Every 10 seconds, the “value” of
each live ball is doubled, and the
score is incremented by the product
of the number of live balls and the
“value” of each live ball

• Every 10 seconds, the field motors
will both increase 20% in power and
change direction (the speed no
longer increases at the 50 second
mark since it is at 100% power)

The pinball machine recognizes the end of the game when the number of live balls

become 0, as a result from balls dropping into the endzone. In Balls of Fury mode, the game
would also end when the elapsed game time has surpassed one minute, even if there are
still balls left on the playing field.

After the game ends, the 2 field motors will be set to 0% power and the user will no
longer be able to control the flippers. A file containing the top 100 scores of the selected
game mode is opened and the score obtained by the user is sorted into the correct spot
within the scores (see appendix B7). The user’s score and ranking relative to other scores is
displayed on the screen, and “high score!” is displayed if the user’s score is ranked first.
Then the top 5 scores are displayed for 5 seconds before the program ends.

Changes in Scope
Initially, a touch sensor was planned to be situated in the middle of the playing field

that the user could try to hit with the pinball. Every 3 hits of the touch sensor would award
the user with an extra pinball being launched on to the play field. However, there were no
extra sensor ports on the brick available for this additional touch sensor, since 2 ports are
for the 2 touch sensors that control the flippers, 1 port is for the ultrasonic sensor, and the
last port is for the Tetrix controller to which the 2 servo motors (for the flippers) are
connected. This last port was initially planned for the touch sensor on the playing field,
before it was realized that the Tetrix controller could only be connected to a sensor port.
Thus, changes were made to have additional balls be launched every 30 seconds instead of
using the touch sensor.
 Another major change is the addition of another game mode, Balls of Fury, to the
pinball game. This game mode was added after Classic mode was coded, and it was clear
that another game mode that uses most of the functions already written for Classic mode
could be easily added. This change makes the pinball machine more entertaining since
having 8 balls on the playing field results in more interactions happening between the
obstacles and the balls. It also increases the complexity of the program and highlights the
transferability of many functions in the program as they are useable for 2 different game
modes.

Constraints and Criteria
Constraints

The constraints stated in the preliminary design report were:

 4

• The cost of extra materials for the pinball machine must not exceed $80 [1]

• The weight of the pinball machine must not exceed 20lbs [1]
Both constraints have been changed since the preliminary design report was written.

The cost constraint was removed as it became more difficult to minimize as the project
progressed. Much extra materials, such as wood, acrylic, paint, custom LEGO pieces, and
pinballs had to be purchased, some of which came with additional shipping fees as well,
leading to the total cost way exceeding the anticipated $80. A decision was made to instead
focus on the quality of the project instead of spending time to search for the cheapest
available option. Not only was this constraint unimportant in helping guide the project
design, it was holding back many good design ideas that would elevate the quality of the
project, because these ideas would lead to purchasing more expensive materials. For
example, when deciding on the type of wood to buy for the frame of the pinball machine,
which consists of four walls and a bottom board, ½’’ MDF and ¼’’ MDF were considered. The
½’’ MDF would ensure a more stable frame that does not shake or break as easily as the ¼’’
MDF, but it costs more than a ¼’’ MDF of the same length and width [2] [3]. Thus, the cost
constraint was ultimately removed as the quality of the project was deemed as more
important by all group members.
 The cost constraint was replaced by a constraint on the dimensions of the pinball
machine: it must not be more than 3ft long, 2ft wide, and 1ft tall. These values were
developed from measuring the dimensions of a table on the twelfth floor of CMH, on which
the pinball machine would be most frequently placed. This constraint was put in place to
ensure the pinball machine is well contained within the edges of that table, and the surface
of the playing field is at roughly the waist level of the user. This ensures the pinball machine
is not at risk of falling off the table, and the user can have a complete view of the entire
playing field while playing the game. In addition, this constraint ensures the pinball machine
can fit through any doors between the twelfth floor and the WEEF lab for transportation
during presentations and Demo Day. Overall, this constraint was not very crucial in helping
guide the project design, since it only serves to ensure the final product can be safely placed
and transported. All components of the machine were able to fit within this dimensional
constraint without concern.
 The weight constraint changed from no more than 20lbs to no more than 35lbs. The
first value was developed from weighing a sample table roughly the anticipated weight of
the pinball machine, before its actual frame was built. The actual frame, plus the playing
field board and acrylic cover, weighed 26lbs. After taking this measurement, some
notebooks and small wooden pieces were placed on top of the frame to simulate the
additional components yet to be integrated, and that weight measured 32lbs. Thus, 35lbs
was decided to be the new weight constraint, with the extra 3lbs added to account for any
errors in estimation. Again, this constraint was not very important in guiding the project
design as it was easy to find light materials that would not contribute significantly to the
overall machine’s weight, but would still be reliable for their intended functions. The reason
to have the weight constraint was to ensure the pinball machine can be moved easily
without risk of injury [1].
 In summary, the updated constraints for this project are:

• Dimensions must not exceed 3ft long by 2 ft wide by 1 ft tall

• Overall pinball machine must not exceed 35 lbs in weight

 5

Criteria
There are no criteria listed in the preliminary design report due to a miscommunication

of the rubric for that report, which required requirements and constraints. However, a list of
criteria was developed for the formal presentation shortly afterwards:

• Aesthetics
o Outer walls are painted and playing field is decorated [4]

• Entertainment Factor
o 1 obstacle on average for every 20in² of the playing field [4]

• Mobility
o No loose parts within or around the machine so that it is easy to carry [4]

These criteria mostly stayed the same throughout the project, the first one was
improved slightly to be more measurable. A survey was created to see if the future users of
this pinball machine think it is indeed aesthetically pleasing, and it will be deemed as such if
15 people think so.

The aesthetics and entertainment criteria played significant roles in guiding the
design of the playing field. In order for the pinball machine to appear aesthetically pleasing
and be as entertaining as possible, much effort was put into brainstorming the background
of the playing field and designing the different obstacles that could be placed on it. In order
to incorporate the mobility criteria, all the internal components of the pinball machine were
secured to the frame using various techniques that will be discussed in the Mechanical
Designs and Implementations section below.

In summary, the updated list of criteria is:

• Aesthetics
o At least 15 people signed off on it being aesthetically pleasing

• Entertainment Factor
o 1 obstacle on average for every 20in² of the playing field

• Mobility
o No loose parts within or around the machine so that it is easy to carry

Mechanical Design and Implementation
Overall Mechanical Description
 The pinball machine has 8 core hardware components. 6 of these components, the
ball detection system, ball release mechanism, ball launching mechanism, field motors,
flippers, and ramps, are contained within the frame and covered by the playing field board,
the 2 other components. A view of how the internal components are placed within the
frame is shown in Error! Reference source not found. below.

 6

Figure 3: internal mechanical system layout

The ball detection system, ball release mechanism, ball launching mechanism, and
ramps work together to autonomously collect balls from the endzone, and eventually
release and launch them back into the playing field. The flippers allow the user to interact
with the pinballs during the game, and the field motors spin obstacles on the playing field to
make the game more exciting.

The Frame

Summary
The frame was the component of the pinball machine that housed all 6 internal

mechanical components. It was constructed using mainly ½” MDF. The frame had an upper
and a lower section which was divided by the playing field and the upper section was
covered by a sheet of acrylic. It was held together using wood glue as well as screws.

Design Considerations
 When designing the frame, there were 3 main considerations. First, the frame had to
allow for quick and easy access to the lower section. To ensure this was possible, dado cuts
were made along the inside walls of the frame to allow the playing field to slide in and out
whenever necessary as well as for the acrylic top. Secondly, the front face had to be
removable. To ensure this, hanger bolts were fastened into the front of the side pieces.
Holes were cut in face, and nuts and washers were used to fasten the face to the frame.
Lastly, to ensure the frame would be structurally sound throughout the duration of the
project, 2 key supports were added. The first support was a piece of pine that was placed
slightly under the dado cut in the front in order to strengthen frame since when the front
face was off, the two side walls were not fully supported. In addition, a second back piece
was used to help absorb any hard-hit balls and prevent the vibrations from effecting any
internal mechanisms.

Manufacturing
 The frame was constructed out of mainly ½” MDF. The pieces were cut using a table
saw as well as a mitre saw. Many rips with the table saw were made to create the dados
since there was no access to a proper dado saw or router with the correct bit. The side of
the frame were fastened together with wood glue as well as #6 – 1 ¼” wood screws. The

 7

screws were counter sunk on each side to ensure the MDF would not crack when driving the
screws in. In addition, hanger bolts were used on the front face to secure the front onto the
frame.

Ball Detection System

Summary
 The ball detection system was responsible for detecting when a ball had been lost in
the game. The system relies on a see-saw mechanism in conjunction with an ultrasonic
sensor to detect fallen balls, as shown in Figure 4. When the system is at its resting state,
the sensor will read a value of approximately 27cm, and when a ball falls it falls on to a
platform on one end of the see-saw causing the sensor to be blocked and read
approximately 4cm for a small duration. The software will recognize this change and
decrease the ball count.

Figure 4: ball detection system, consisting of the ultrasonic sensor and see-saw

Design Considerations
 When designing the ball detection system, there were 3 main considerations. First,
that the ultrasonic sensor would always change its reading a substantial amount when a ball
falls and that it would do it consistently. To ensure the sensor would have enough time to
read a change in value, the weighting of the see-saw mechanism was essential. The end
closer to the sensor had to be heavier than the platform side so the sensor’s value at rest
would be large. This side also had to be large to ensure the sensor would always be blocked
upon a ball falling and there would be no chance the sensor would miss the wall and
therefore not detect a dropped ball. To do both of these, the side closer to the sensor was
made larger and heavier than the platform side.

Secondly, the platform had to be able to contain and guide the ball onto the ramp
consistently and allow for multiple balls at once. To ensure this, the platform was first built
independently from the rest of the mechanism in order to get good dimensions and build
support around the edges of the platform, so the pinball did not roll off. In order for the ball
to roll onto the ramp consistently, the see-saw needed to be slightly inclined towards the
ramp, this was done by machining the centre wooden support opposite the ramp to be

 8

taller than the other centre support. The rails along the edges of the platform guided the
ball on to the ramp as well. Also, to ensure that multiple balls could be handled at once, the
rails were made tall enough that no balls would roll off. This was tested and was concluded
to work.

Lastly, to ensure the system would be stopped at the perfect position during the
rested and activated states, the bottom side of the playing board was used to stop both
sides of the mechanism. When in the rested state, the top of the platform would rest
against the bottom of the playing board and wait for a ball. Once a ball had fallen onto the
platform, the top of the wall on the sensor side would hit the bottom of the playing board,
ensuring the platform would stop slightly above the ramp so the ball could roll off onto the
ramp with a small boost of speed given from the small fall, the ultrasonic sensor was
positioned accordingly.

Manufacturing
 The majority of the system was constructed with Lego because it was easy to modify
and test with. The supports for the ultrasonic sensor and the see-saw mechanism were
made using ½” MDF because it allowed for the easiest mounting to the frame as well as its
increased rigidity compared to a Lego mounting system. In addition to the structural
benefits of MDF, it was also easier to glue MDF supports to the board compared to trying to
mount Lego pieces temporarily. The entirety of the see-saw mechanism was built using Lego
and epoxied to the MDF support pieces.

Ball Release Mechanism

Summary
 The ball release mechanism was responsible for the release of a single ball to the ball
launching mechanism. It would lift a Lego arm up at a slow speed until a desired encoder
value to allow a singular ball to roll down to the ball launching mechanism, before dropping
a fast speed to contain the ball behind it. This mechanism can be seen below in Figure 5.

Figure 5: ball release mechanism

Design Considerations
 When designing the ball release mechanism, there were 3 main design
considerations. To ensure accurate zeroing of the encoder, the arm had to be parallel with
the ramp. To ensure this, the motor was mounted at the perfect height so that the arm
would be parallel to the ramps surface, and so that through software, the discrepancy
between the arm’s real location and its location in the software would be minimized.
Secondly, the motor had to be extremely secured to the mounting bracket so that the
encoder value would be accurate for all balls. To ensure this, 5 heavy duty elastic bands

 9

were used to secure the motor to the mount. Lastly, the system had to be small in order to
allow space for other systems. To ensure this, a small and simple design was chosen over a
more complex and potentially more reliable design.

Manufacturing
 The mechanism was built using Lego and mounted to MDF. Since there was a
constraint on the size of the mechanism, a Lego arm was used because it allowed for the
simplest and the smallest mechanism possible. An MDF mounting bracket was made
because of the rigidity it offered compared to a Lego one as well as the ease of being able to
glue the MDF directly to the base of the frame.

Ball Launching Mechanism

Summary
 The ball launching mechanism was responsible for launching a single ball up a ramp
and into the playing field. It was driven by a large motor connected to a gear box which was
attached to a flywheel. When activated, the flywheel would spin, and a ball would be guided
under the spinning flywheel and launched up the ramp. This can be seen below in Figure 6.

Figure 6: ball launching mechanism

Design Considerations
 When designing the ball launching mechanism, there were five main design
considerations.

First, to ensure that the flywheel would spin fast enough to propel the ball up the
ramp, a gear box was used. The gear box used 3 x 24 tooth, 2 x 16 tooth, and 1 x 8 tooth
gears in order to increase the rpm of the final axle and spin the flywheel fast enough. In
addition, the location on the flywheel that struck the ball was also important to ensure the
ball made it up the ramp. A groove was sanded along the outside edge of the base in order
to keep the ball along the wall of the main frame so the location on the flywheel that struck
each ball was consistent.

Secondly, the gears had to be both aligned along the axle and interlocked with each
other enough to prevent unnecessary wear and prevent as much loss of energy as possible.

 10

For these reasons, the accuracy during the manufacturing process was essential to the
systems ability to function at its maximum potential.

Third, in order to stabilize the system as much as possible, the frame for the
mechanism was over engineered. The two walls were screwed and glued to the base and
slots were made for the axle mounting blocks so that they could be epoxied on 3 sides
instead of just 1.

Fourth, the driving motor had to be mounted so that it would lose as little power as
possible while it was running. To do this, a mounting bracket was made, and the motor was
secured to it with 12 elastic bands. After testing, it was concluded that the motor did
successfully fulfill this requirement.

Fifth, the distance between the base of the mechanism and the bottom of the
flywheel had to be slightly less than the diameter of the ball in order for the flywheel to
apply enough power to the ball to get up the ramp. This distance was controlled by the
height that the slots in the frame walls were cut to. A prototype was built with Lego and
tested until an appropriate distance was achieved, then measurements were taken of the
prototype and reproduced on a wooden frame. The overengineered frame for the
mechanism also aided in ensuring that this distance would always remain consistent.

Manufacturing
 There were 2 main components to this mechanism. The gear box was made using
Lego gears, axles, connectors, adaptors, and mounting blocks. These were used instead of
3D-printed parts due to the time constraint and ease of testing. The frame for this
mechanism was built using ½” MDF because structural stability was a key requirement for
this mechanism. To manufacture the frame for this mechanism, the walls and base were cut
with a bandsaw and the slots were cut using a bandsaw and scroll saw. The walls were
mounted to the base with wood glue and countersunk screws.

Field Motors

Summary
 The field motors were responsible for spinning an obstacle on the field. They were
mounted below the playing field and lined up with the holes in the playing field to allow an
axle to go up through it. The field motors can be seen mounted below in Figure 7, and
integrated on the playing field in Figure 8.

Figure 7: two field motors

 11

Figure 8: the two LEGO obstacles attached to the field motors (top right and bottom left)

Design Considerations
 When designing the field motor mounts, there were 2 main design considerations.
First, the motors had to be at the proper height so that the tops of the axles would be above
the playing field board. To ensure this, the mounting brackets were manufactured at the
proper height so that enough of the axle was exposed above the field to mount an obstacle
to.

Secondly, the mounting brackets had to ensure that the motors would not shift after
the obstacle struck the ball. To meet this requirement, the mounts were designed with
multiple flat securing points and secured with many elastic bands.

Manufacturing
 The mounts were made of ½” MDF because it allowed for the most rigidity and ease
of mounting to the base.

Flippers

Summary
 The flippers were responsible for launching the ball up the playing field. They were
built using Tetrix Prime components and controlled via touch sensors. The flippers can be
seen integrated on the playing field below in Figure 9, and one of their corresponding servos
mounted in Figure 10.

Figure 9: the two flippers on the playing field

 12

Figure 10: right servo motor and its supports

Design Considerations
 When designing the flippers, there were 3 main design considerations. First, to
ensure the flippers would not break, Tetrix Prime beams were used as the flippers. Since
they were made from aluminum, they were light and strong. Second, the flippers had to be
responsive and accurate, so Tetrix servo motors were used over LEGO motors or the
continuous motors. Finally, the motors had to be mounted in the lower section and the
mounts could not affect the other systems. A design where the servo motors were mounted
to a plate and the plate was raised, as seen in Figure 10, was the best option due to it’s
strength, and how it doesn’t interfere with other nearby systems as it’s mounted out of the
way.

Manufacturing
 The mounts for the flippers were built out of ½” MDF and manufactured using a
bandsaw. The holes in the top of the mount (as seen in Figure 10) were cut for the rod that
comes out of the servo motor and for the mounting bolt, so that the flippers could be taken
out from the top. The hole for the rod lined up with a hole on the playing field and the hole
for the mounting bolt was counter sunk to allow the playing field to still slide in to the
frame.

Ramps

Summary
 The ramps were responsible for accepting the balls from the ball detection system,
guiding them to the ball launching mechanism, and up to the playing field. They can be seen
below in Figure 11 and Figure 12.

 13

Figure 11: ramp leading from ball detection system to ball launching mechanism

Figure 12: ramp leading from ball launching mechanism to playing field

Design Considerations
 When designing the ramps, there were 2 main design considerations. First, the
design had to ensure that the balls would approach the ball release and ball launching
mechanisms in the desired position consistently. To achieve this, the ramp before the ball
release and ball launching mechanisms was bevelled towards the frame wall. In addition to
the bevel, a fence was glued onto the open sides of each ramp in order to contain the balls
at all times.

Secondly, the ramp could not impede the balls ability to roll. This was ensured by
sanding the surface of the ramp as well as adding cardboard pieces to improve the guidance
of the ramps and to prevent the ball from getting stuck anywhere on the ramp.

 14

Manufacturing
 The ramps were constructed using ½” MDF and cut using a band saw. Each ramp was
built to a width of 1” by gluing two identical pieces together in order to take into account
for the diameter of the ball being ¾”. Ideally, the ramps could have been manufactured to
be exactly ¾” wide but due to the time constraint and the materials available, this was not
possible. The ramps were cut so the slope changed at rate of 0.5” down vertically per 5”
down the length of the ramp so the ball would have had enough speed to roll down the
ramp. This was constrained by the height that the ball detection systems platform would be
at during the active state and the location of the flippers and ball release mechanism. The
curve that the final ramp was cut at was determined through prototyping. The only factor
that was considered during prototyping was how the initial slope of the ramp would affect
the balls path up the ramp and if it could potentially launch the ball up and hit the bottom
of the playing field.

Playing Field

Summary
 The game of pinball takes place on the space-themed playing field, as shown in
Error! Reference source not found.. Pinballs enter the playing field through the entrance
hole on the top left corner of the field. There are obstacles on the playing field which
interact with the pinballs, including the 2 revolving obstacles spun by the field motors. The
flippers and the endzone are located at the bottom of the playing field, near the player.

Figure 13: playing field

Another important feature of the playing field is the mini entrance ramp located at
the entrance hole. This ramp acts as a one-way gate that only allows pinballs to enter the
playing field, and blocks any pinballs trying to go down the ramp towards the ball launching
mechanism.

 15

Design Considerations
 Aesthetics and the type, amount, and placement of obstacles are the 2 most
important factors to consider when designing the playing field. Since this is the main
component through which the player experiences the game of pinball, it must be made as
entertaining and as aesthetically pleasing as possible. Thus, different types of obstacles,
such as a curved rail that changes the direction of a pinball, a zig-zagging pair of railings that
slows down the pinball, and spinning obstacles were incorporated onto the playing field to
make the game more interesting. Then the field was painted to be space-themed, so that
each obstacle can blend into the theme: the curved railings were painted to be the moon,
the zig-zagging railings were decorated as a rocket ship, the small spinning obstacle was a
part of an UFO and the large one was a part of the Sun. In this way, the obstacles could
synergize with the paintings on the playing field to deliver a fun playing experience for the
user.
 Another important factor to consider is the location of the holes for the entrance
ramp, spinning obstacles, flippers, and the endzone. All these holes must line up with the
positions of their respective systems in the lower section of the frame. Thus, these positions
were carefully planned during the design of the layout of the lower section to ensure that
no components conflict with each other, and the positions of the holes were carefully
measured on the playing field.

Manufacturing
A ½’’ MDF was cut to be the playing field. All the stationary obstacles were

separately made from scrap wood and glued onto the playing field.

Software Design and Implementation
Software Description and Functions

There were many unique software tasks that were to be performed in order to run a
successful pinball machine. The software was written in a way that no events were missed
during gameplay. For example, it did not miss any balls falling through the end zone and it
was able to react to the user activating the flippers almost simultaneously. For this reason,
no waits or loops were used throughout gameplay. Instead, the game updated according to
many different booleans and timers. A variety of functions were called where inputs were
checked for, and the appropriate booleans and timers were changed.

As mentioned, there was a lot of activity to be checking for and updating throughout
gameplay. These were divided into distinct well named functions for each distinct action.
Having these distinct functions was chosen for clarity and for ease of testing, as each
individual function of the code could be further analysed to test for one specific thing. This
allowed the code to be manipulated easily which helped create other game modes. All
functions are laid out in Table 2.

Table 2: Functions

Function Name Parameters Return
Type

Description Writer

initialize none void Configures all
sensors

Noah

 16

flippers bool leftFlipperRaised
bool rightFlipperRaised

void Controls the
flippers (see

Appendix B1)

Noah

ultrasonicCheck bool ballLost
int ballCount

void Detects when balls
fall through the
endzone (see
Appendix B2)

Noah

ballCountUpdate int ballCount
bool

downButtonPressed
bool upButtonPressed

void Detects manual
ball increments
and decrements

(see Appendix B3)

Noah

ballLaunch bool ballLaunchAccel
bool ballLaunchDecel

bool ballLaunching
int ballsLaunched
string gameMode

void Launches balls into
the playing fields
(see Appendix B4)

Nicholas

ballRelease none void Releases balls
down ramp
towards ball

launching system
(see Appendix B5)

Nicholas

setFieldMotors int motorPower void Sets field motors
to a desired power
(see Appendix B6)

Jerry

sortScore int score
int * topScores

int Sorts score
through topScores

array, returns
leaderboard

placement (see
Appendix B7)

Jerry

Tasks
The software task list for demo began with start-up. The user was prompted to

select either the Classic or Balls of Fury game mode. If Classic mode was selected, the score,
0, and ball count, 1, were displayed on the EV3 screen and one ball was launched into the
playing field. If Balls of Fury was selected, then the score, 0, and the ball count, 8, were
displayed on the screen, and then all 8 balls were launched into the playing field. The two
field motors began to spin at 20% power.

During regular operation, the left and right flippers were raised and lowered through
the user pressing and releasing the left and right touch sensors. The ball count was
decremented by one every time a ball fell into the endzone. In Classic mode, the score was
incremented by 10 every 5 seconds, and every 30 seconds a new ball was launched into the
playing field. The field motors both increased their power by 20%, and switched directions
at this time as well. In Balls of Fury mode, the value of each live ball, which started at 10,
was doubled every 10 seconds and the score was incremented by the product of the
number of balls that were alive by the current value of a ball. The field motors both
increased their power by 20%, and switch directions as well. Once the field motors hit 100%,

 17

they were no longer incremented, but they continued to switch directions at their regular
intervals.

To handle unexpected events, a manual ball increment/decrement feature was
added so that the user could manually increment or decrement the ball count if the
ultrasonic misread the number of fallen balls. If the up button was pressed on the EV3, then
the ball count was incremented by 1 and if the down button was pressed on the EV3, then
the ball count was decremented by 1.

As for the shutdown, once the ball count was 0 in Classic mode, the game would
end. In Balls of Fury mode, once the ball count was 0 or 1 minute of gameplay elapsed, the
game ended. The field motors were set to a power of 0, then the flipper control was
deactivated, and the score stops increasing. The user’s placement on the leaderboard was
determined by a sorting algorithm, see Appendix B7. The user’s score and placement were
displayed on the screen and “high score!” was displayed if a high score was achieved. The
top 5 scores were displayed to the user, and the program ended.

Data Storage in the Program
 The data for the previous 100 high scores were stored on a text file on the EV3 brick.
There was a file for both Classic mode and Balls of Fury mode. Once the game was
completed, these scores, depending on the game mode, were sorted into an array. The
score achieved by the user was then sorted into the array using the sortScore function, see
Appendix B7, to determine the user’s placement on the leaderboard. The updated scores
were then outputted back to the text file.

Design Decisions
Various software design decisions were made throughout the project in order to

optimize the program functionality and readability. In the beginning, the main program
consisted of various loops that controlled the flippers, with conditions that were constantly
checking for certain inputs (fallen balls, manual ball increment/decrement, score updates,
etc.). It was decided that this format had too much repetition and should be improved
(thanks to Ryan Consell for helping realize a more efficient format). Instead of having loops
within loops where certain inputs are constantly acting as the exit condition, the
aforementioned system where functions are constantly being called within one big outer
loop (which checks for end of game) was chosen. This system uses booleans to let the
program know when to do what task or check for what condition (launch new balls,
decrement the ball count, raise/lower flippers, etc.).

An example of how this system works can be seen in the flippers function (see
Appendix B1). There are two booleans (rightFlipperRaised and leftFlipperRaised). The
program is constantly checking for touch sensor inputs (corresponding to the left and right
flippers). Once this is detected, the corresponding boolean is made true and the flipper is
raised. The program then checks for when the touch sensor is released, and it will then turn
the corresponding boolean back to false and lower the flipper. This system can be seen fully
implemented in Appendix A.

Testing
Testing procedures (including the reason for testing, test cases and expected behaviour) can
be seen below in Table 3.

 18

Table 3: Software Testing

Test Reason Test Cases Expected Behaviour

Flippers To ensure flippers
are fully functioning

• Holding
flipper
buttons

• Spamming
flippers
buttons

• Both flippers
are in raised
position

• Flippers react
responsively

Ball release
mechanism

To ensure all balls
can be released

• Releasing
different
amounts of
balls

• All balls are
released, one
by one

Ball launching
mechanism

To ensure balls are
launched on to
playing field

• Launching
balls on to
the playing
field

• Balls are
launched up
ramp and on to
playing field

Sorting/displaying
score

• Ensure score
is sorted
properly

• Ensure
leaderboard
is displayed
properly

• Testing good
scores (on
the
leaderboard)

• Testing bad
scores (off
the
leaderboard)

• The score is
sorted into the
array,
leaderboard is
updated, and
user’s
placement is
displayed

• “u r pathetic” is
displayed to
user as they
haven’t made
the
leaderboard

Problems
The biggest issue that was encountered had to do with the timing of the ball release

mechanism. This system raises and lowers an arm to release one ball at a time down a ramp
to the ball launching mechanism, as described in the Mechanical Design and
Implementation section. The issue was that as more balls got released into the playing field,
there would be less force pushing against the front ball (as there were less balls behind it).
This meant that the ball would move slower than balls previous, and an up and down arm
speed for the first ball was found to be too quick for balls further down the line. Resolving
this issue took patience and lots of trial and error. The timing was eventually perfected by
deciding to raise the arm at a slow speed until it’s high enough to let the ball through, then
lowering it quickly. This optimized timing led up to 8 balls to be launched into the playing
field most of the time. The EV3 motor still behaves inconsistently despite all factors being
carefully controlled, perhaps due to the precise encoder count that it has to turn every time.

 19

Verification
Dimensional Constraint

49’’ by 97’’ (roughly 4ft by 9ft) MDF’s were purchased from Home Depot, which
were used to construct the frame of the pinball machine. The left and right pieces of the
frame were cut to 2.5ft (for the frame’s length) by 0.7ft (for the frame’s height); the front
and rear pieces of the frame were cut to 1.5ft (for the frame’s width) by 0.7ft (for the
frame’s height); the top and bottom pieces of the frame were cut to fit the frame’s length
and width accordingly. In this way, the frame’s overall dimensions are 2.5ft long by 1.5ft
wide by 0.7ft (measured by a tape measure), which meets the constraint on the dimensions
of the board stated in the Constraints and Criteria section.

Weight Constraint
Since the frame of the pinball machine was constructed from ½’’ MDF for stability, it

is quite heavy and leaves 9lbs of weight for the rest of the components to be integrated to
the frame (see Constraints and Criteria section). Thus, lighter materials such as thin plywood
and small pieces of ½’’ MDF were used to construct the various systems placed beneath the
playing field board, and LEGO pieces were used to construct the see-saw balance of the ball
detection system to minimize additional weight. The estimated amount of materials to be
used to construct the extra components were also weighed beforehand to ensure their
weight does not exceed 9lbs. In the end, the entire pinball machine weighed 34lbs (just
below the 35lbs limit) on a scale as a result of this careful planning and use of lighter
materials.

Discarded Constraint - Cost
As per mentioned in the Constraints and Criteria section, the constraint that “the

cost of extra materials for the pinball machine must not exceed $80” was discarded. It
quickly became clear that this constraint was not going to be met once more planning was
done to determine the amount of extra materials that had to be purchased, and more
research was done to determine the costs of each material. For example, the amount of
wood that had to be purchased costs $25, the acrylic cover alone costs $26, and the paint
supplies cost $25.

A design change that can address the issue is purchasing lower quality materials in
general, such as purchasing ¼’’ MDF instead of ½’’ MDF for the frame or using low quality
paint to decorate the machine. However, as discussed before, the focus for this project is
more about quality than cost, thus this constraint was discarded.

Project Plan
Task Distribution

All team members worked together to design the mechanical and software
components of the pinball machine. Since only one of the group members, Nicholas Drazso,
has had extensive experience in woodworking, he constructed the majority of the hardware.
Only Nicholas and Jia Sheng Lu had ESMS machine shop training, so Jia Sheng also helped
manufacture some pieces needed for various components. This leaves Noah MacAskill to
code the majority of the software, while Jia Sheng and Nicholas each wrote a few functions
as well. Overall, every group member participated in some aspect of the design and creation

 20

of both mechanical and software systems, and worked together to assemble the pinball
machine in the end.

Deviations from Project Plan
There were no changes made to the project plan presented in the preliminary design

report [1], however the actual project timeline deviated significantly from it due to many
unforeseen issues. Table 4 compares the planned dates of completion for all tasks (can be
found on the preliminary design report as well) to their actual dates of completion.

Table 4: Anticipated vs Actual Task Completion Dates

 Anticipated
Completion Date

Actual Completion
Date

Frame Construction Nov. 4th Nov. 3rd

Ball Launching Mechanism Construction Nov. 7th Nov. 6th

Ball Release Mechanism Construction Nov. 7th Nov. 11th

Flippers System Construction Nov. 13th Nov. 16th

Start Game Code Nov. 7th Nov. 19th

Ball Launching Code Nov. 7th Nov. 15th

Points Assignment Code Nov. 10th Nov. 16th

Highscore File I/O Code Nov. 11th Nov. 19th

Field Motor Control Code Nov. 15th Nov. 16th

Flippers Control Code Nov. 15th Nov.17th

Installation of Obstacles onto Playing Field Nov. 17th Nov. 20th

Decorating and Painting Pinball Machine Nov. 19th Nov. 21st

Testing and Refining of Overall System Nov. 20th Incomplete

 The planned timeline was followed accordingly for only the first 2 tasks – covering
frame construction and ball launching mechanism construction. All other tasks were
completed after the anticipated completion date, one reason being the team’s inability to
receive the parts requested in the extra parts request form until November 12th. The extra
parts requested included the servo motors needed to be the flippers, extra touch sensors
needed to control the flippers, extra motors needed to be the field motors, and extension
cords, thus the tasks that depended on these components were bottlenecked. For example,
without the servo motors, the code written to control them couldn’t be tested and the
structure to hold them in place couldn’t be designed, thus flipper system construction and
flippers control code completion dates were both delayed.

The completion dates of high score file I/O code, ball launching code, and start game
code marked the largest deviations from their planned completion dates, since the team
decided to focus on the more important tasks such as constructing the ball launching and
release mechanisms and troubleshooting the setting up of the servo motors. These large
deviations are also a result of unthorough planning. It is unreasonable to have the code for
ball launching be done on the same day that the construction of the ball launching
mechanism is done, since the code needs to be tested on the hardware first and then
further debugged and refined. It is also unreasonable to program the start game and file I/O
code before the flippers control (which is more important to the functionality of the pinball
machine) is coded.

 21

Additionally, many important, time consuming tasks were not even included in the
project plan due to oversight, which is another reason for the majority of the planned tasks
being pushed back. Such tasks include designing and constructing the ball detection system,
coding a function for the ultrasonic sensor to detect a ball in the endzone, designing and
constructing all the internal ramps, and affixing all components to the frame of the pinball
machine.

Conclusions
 The most important features of the pinball machine include launching pinballs onto
the playing field via its ball releasing and launching mechanisms, allowing the user to control
the flippers via touch sensor presses, detecting balls that fall through the endzone, and
ranking the scores of players. Each feature has its associated hardware system and RobotC
function, which work together to accommodate for two distinct game modes. In general,
the pinball machine executes all of its tasks successfully, with the exception of the ball
release mechanism, which is inconsistent in its ability to release balls despite all hardware
and software factors being controlled very carefully.

The pinball machine project has successfully provided a fun source of entertainment
to the residents of the twelfth floor of CMH, bringing joy to everyone who played it. The
constraints on the pinball’s dimensions (no more than 3ft long by 2ft wide by 1ft tall) and
weight (no more than 35lbs) were both met. As for the criteria, at least 15 other people
thought it was nice aesthetically, there was measured to be at least 1 obstacle on average
for every 20in² of the playing field, and there were no loose parts in and around the pinball
machine, resulting in an aesthetically pleasing, entertaining, and easy to carry product.

Possible Improvements for Mechanical Design

Ball Release Mechanism
The ball release mechanism was the most inconsistent system of the pinball

machine. As mentioned in the Software section, the ball release arm was incredibly difficult
to control precisely. Sometimes it would release one ball as expected, but other times it
would release 2 balls or no balls at all, despite all factors being carefully controlled.

An alternate design for the ball release mechanism, where the EV3 motor rotates a
board with a pinball-sized hole cut into it (see Figure 14), could increase the consistency and
reliability of this system. Every time a pinball is to be released, the motor would turn the

board 360 at a rate just slow enough for one pinball to roll through the hole cut-out in the

board. This eliminates the need for the current ball release arm to precisely turn 27
repeatedly, which is a possible source of its inconsistency since the motor encoder is not
very precise and error will eventually build up.

 22

Figure 14: design for improved ball release mechanism

Ball Launching Mechanism
 This system experiences the most amount of mechanical stress due to the high gear
ratios used to turn each axle, and the high speed at which the gears are turned, which could
gradually wear out the gears. In addition, the axle onto which the flywheel is attached
bends every time a pinball passes under the flywheel, which wears the axle and wastes
energy which could be used to further propel the pinball.
 A potential improvement is to replace the LEGO gears and axles with ones made
from alloy steel, which is a far stronger material than plastic and suitable for gears and axles
[5]. The EV3 motor should also be replaced with a high torque motor compatible with the
new axles, perhaps coded via an Arduino board. This would result in a much higher quality
system that does not wear easily and launches the pinball much more powerfully.

Internal Ramps
 The ramps inside the pinball machine are 0.25’’ wider than the diameter of the
pinball and have small bumps and unlevel portions which added inconsistencies to the
movement of balls on it. This sometimes results in a pinball not rolling toward the ball
release mechanism because it is stuck behind a bump, or a pinball not being released or
launched properly because it had too much sideways movement on the ramps.
 Narrowing down ramps to being 0.125’’ or even 0.063’’ wider than the diameter of
the pinball would minimize sideways movements of the pinball, and using the width of one
MDF piece instead of gluing 2 of them together would avoid unevenness throughout the
ramp surface. This design better regulates the movement of pinballs inside the pinball
machine and further improves the consistency of the ball release and launching
mechanisms.

Endzone Ball Management
 There is currently no system in place to prevent 2 or more balls falling into the
endzone consecutively, which may result in the ultrasonic sensor detecting the 2 lost balls

 23

as only 1 ball. Although this situation does not happen often, having a feature in place to
prevent this situation would further sophisticate the pinball machine.
 One recommendation is to use a system similar to the newly recommended design
for the ball release mechanism as mentioned above. A board, which has a pinball-sized hole
on it and is attached to an EV3 motor, would block the bottom of the endzone hole. During
the game, the motor would continuously spin the board so that every 5 seconds or so the
pinball-sized hole would match up with the endzone hole and allow only one pinball to slip
through, and the ultrasonic would have sufficient time to distinguish between this lost
pinball and the next one. This solution could use the same function that would be used to
control the newly recommended ball release mechanism as well, since the two systems
behave identically, just (possibly) with different motor powers.

Possible Improvements for Software Design

Using Multiple Tasks
 If this project were to be used in industry, its software aspect would be easier to
read and maintain if a separate task was used to contain the code for each of the tasks that
the pinball machine is executing during the game. As mentioned in the Software Design and
Implementation section, many different conditions are being checked simultaneously during
gameplay. The program currently does this by iterating through a while loop, within which
are many if statements and booleans to check for specific conditions. While both software
designs would achieve the same result, using different tasks to categorize what the pinball
machine is doing during the game would make the code easier to read and debug in
industry.

Player Profile Ranking System
 An additional software feature that can make the game more professional and closer
to industry standard is a player profile ranking system. This feature would allow each new
player to set up a profile within the game which has their name and high scores in each
game mode. At the end of each game, the highest scores for that game mode would be
displayed alongside the player who obtained it. This would make the game more personal to
each player and further encourage competitiveness as each player can try to beat their
friends’ scores.

 24

References

[1] J. S. Lu, N. Drazo and N. MacAskill, "Preliminary Design Report for Pinball Machine,"
Waterloo, 2019.

[2] Rona, "MDF Panel - Natural," Rona, [Online]. Available: https://www.rona.ca/en/mdf-
panel-1-4-x-49-x-97-49585310. [Accessed November 2019].

[3] Home Depot, "Metrie MDF Premium," Home Depot, [Online]. Available:
https://www.homedepot.ca/product/metrie-mdf-premium-1-2-x-49-x-97/1000167402.
[Accessed November 2019].

[4] J. S. Lu, N. Drazo and N. MacAskill, Pinball Machine, Waterloo, 2019.

[5] C. Gonzalez, "Gears Look to the Future for Material," MachineDesign, 8 December 2015.
[Online]. Available: https://www.machinedesign.com/engineering-essentials/gears-
look-future-material. [Accessed 1 December 2019].

 25

Appendix A – Project Source Code
//import libraries
#include "EV3Servo-lib-UW.c" //to control Tetrix Standard Servo Motors
#include "PC_FileIO.c" //for file i/o with EV3 Brick

//motors
const tMotor BRM = motorA; //ball release mechanism
const tMotor BLM = motorB; //ball launching mechanism
const tMotor FIELD_MOTOR_C = motorC; //motor on playing field
const tMotor FIELD_MOTOR_D = motorD; //motor on playing field

//sensors
const tSensors TOUCH_L = S1; //touch sensor to control left flipper servo
const tSensors TOUCH_R = S2; //touch sensor to control right flipper servo
const tSensors SERVOS = S3; //servo controller board
const tSensors ULTRASONIC = S4; //ultrasonic sensor

//servo configurations
const int SERVO_L = 3; //left flipper servo connected to SV3 port
const int SERVO_R = 4; //right flipper servo connected to SV4 port
const int INIT_POSITION = 0; //initial position of the servo motors
const int RAISED_POSITION = 75; //the position that the servos will turn to

//ball release
const int ENCODER = 27; //orginally 27, 32 let 2 balls go
const int UP_SPEED = 5; //originally 5
const int DOWN_SPEED = 22;

//array size of topScores
const int NUM_SCORES = 100;

//maximum number of balls that can be launched
const int NUM_BALLS = 8;

//configures all sensors
void initialize()
{

 //Flipper System
 SensorType[TOUCH_L] = sensorEV3_Touch; // left Touch Sensor
 SensorType[TOUCH_R] = sensorEV3_Touch; //right touch sensor
 SensorType[SERVOS] = sensorI2CCustom9V; // Tetrix Input

 //ensures servo positions are set to initial
 setServoPosition(SERVOS, SERVO_L, INIT_POSITION);
 wait1Msec(100);
 setServoPosition(SERVOS, SERVO_R, INIT_POSITION);
 wait1Msec(100);

 //Ultrasonic
 SensorType[ULTRASONIC] = sensorEV3_Ultrasonic;
}

//controls the flippers in correspondence to touch sensor presses
void flippers(bool & leftFlipperRaised, bool & rightFlipperRaised)
{
 //controls left flipper
 if(!leftFlipperRaised && SensorValue[TOUCH_L] == true)
 {
 setServoPosition(SERVOS, SERVO_L, -RAISED_POSITION);
 leftFlipperRaised = true;
 }
 else if(leftFlipperRaised && SensorValue[TOUCH_L] == false)
 {
 setServoPosition(SERVOS, SERVO_L, INIT_POSITION);

 26

 leftFlipperRaised = false;
 }

 //controls right flipper
 if(!rightFlipperRaised && SensorValue[TOUCH_R] == true)
 {
 setServoPosition(SERVOS, SERVO_R, RAISED_POSITION);
 rightFlipperRaised = true;
 }
 else if(rightFlipperRaised && SensorValue[TOUCH_R] == false)
 {
 setServoPosition(SERVOS, SERVO_R, INIT_POSITION);
 rightFlipperRaised = false;
 }
}

//endzone ball detection through ultrasonic sensor
void ultrasonicCheck(bool & ballLost, int & ballCount)
{
 if(!ballLost &&(SensorValue[ULTRASONIC] == 255 ||
 SensorValue[ULTRASONIC] < 10))
 {
 ballCount--;
 displayBigTextLine(8, "Ball count: %d", ballCount);
 ballLost = true;
 time1[T2] = 0;
 }
 //prevents the ultrasonic from counting the same ball in the endzone twice
 else if(ballLost && time1[T2] > 1050)
 {
 ballLost = false;
 }
}

//increases field motor speed by 20 (up to 100), and reverses their speed
void setFieldMotors(int & motorPower)
{
 motor[FIELD_MOTOR_C] = motorPower;
 motor[FIELD_MOTOR_D] = -motorPower;

 motorPower *= -1;

 if(abs(motorPower) != 100)
 {
 if(motorPower < 0)
 motorPower -= 20;
 else
 motorPower += 20;
 }
}

//checks for manual ball count increment/decrement and displays ball count
void ballCountUpdate(int & ballCount, bool & downButtonPressed,
 bool & upButtonPressed)
{
 if(getButtonPress(buttonDown) && !downButtonPressed)
 {
 downButtonPressed = true;
 ballCount --;
 displayBigTextLine(8, "Ball count: %d", ballCount);

 }else if (!getButtonPress(buttonDown) && downButtonPressed)
 {
 downButtonPressed = false;
 }
 if(getButtonPress(buttonUp) && !upButtonPressed)

 27

 {
 upButtonPressed = true;
 ballCount ++;
 displayBigTextLine(8, "Ball count: %d", ballCount);

 }else if (!getButtonPress(buttonUp) && upButtonPressed)
 {
 upButtonPressed = false;
 }
}

//controls the ball release mechanism to release one ball at a time
void ballRelease()
{
 if(motor[BRM] == -UP_SPEED && nMotorEncoder(BRM) <= -ENCODER)
 {
 motor[BRM] = DOWN_SPEED;
 }
 else if(motor[BRM] == DOWN_SPEED && nMotorEncoder(BRM) >= 0)
 {
 motor[BRM] = 0;
 nMotorEncoder(BRM) = 0;
 }
}

//controls the ball launching mechanism to launch balls into the playing field
void ballLaunch(bool & ballLaunchAccel, bool & ballLaunchDecel,
 bool & ballLaunching, int & ballsLaunched, string gameMode)
{
 //acelerating the ball launching wheel
 if(ballLaunchAccel && time1[T3] > 250)
 {
 motor[BLM] += 5;
 time1[T3] = 0;
 if(motor[BLM] == 100)
 {
 ballLaunchAccel = false;
 motor[BRM] = -UP_SPEED;
 }
 }

 //keeping the ball launching wheel at max speed
 //behaviour differs depending on gamemode
 if(motor[BLM] == 100)
 {
 //launches one ball only in classic mode
 if(gameMode == "Classic" && time1[T3] > 3500)
 {
 ballLaunchDecel = true;
 time1[T3] = 0;

 //launches all balls in Balls of Fury mode
 }else if(gameMode == "Balls of Fury")
 {
 if(time1[T3] > 1800 && ballsLaunched != NUM_BALLS)
 {
 motor[BRM] = -UP_SPEED;
 time1[T3] = 0;
 ballsLaunched ++;
 }else if(time1[T3] > 2000)
 {
 ballLaunchDecel = true;
 }
 }
 }

 28

 //ball is release while ball launching wheel at max speed
 ballRelease();

 //decelerating the ball launching wheel
 if(ballLaunchDecel && time1[T3] > 250)
 {
 motor[BLM] -= 5;
 time1[T3] = 0;
 if(motor[BLM] == 0)
 {
 ballLaunchDecel = false;
 ballLaunching = false;
 }
 }
}

//sorting the obtained score into the pre-existing list of scores
//returns the ranking of the obtained score when compared with other scores
int sortScore(int score, int * topScores)
{
 int index = 0;
 bool sortComplete = false;

 while(!sortComplete && index < NUM_SCORES)
 {
 if(score > topScores[index])
 {
 for(int j = NUM_SCORES - 1; j > index; j--)
 {
 topScores[j] = topScores[j-1];
 }
 topScores[index] = score;
 sortComplete = true;
 }
 index++;
 }

 //if the obtained score does not rank within the top 100 scores
 if(index >= NUM_SCORES)
 index = -1;

 return index;
}

task main()
{
 initialize();

 //general variables
 int score = 0;
 int motorPower = 20; //field motor power
 int ballCount = 0; //the number of live balls on the playing field
 string gameMode = "";

 //ball launching mechanism variables
 bool ballLaunching = true;
 bool ballLaunchAccel = true;
 bool ballLaunchDecel = false;

 //flippers system variables
 bool leftFlipperRaised = false;
 bool rightFlipperRaised = false;

 //endzone ball detection variables
 bool ballLost = false;
 bool downButtonPressed = false;

 29

 bool upButtonPressed = false;

 //balls of fury mode variables
 int ballValue = 10;
 int ballsLaunched = 1;

 //initializes BRM
 nMotorEncoder[BRM] = 0;

 //menu - selecting game modes
 displayBigTextLine(0, "MAIN MENU");
 displayBigTextLine(3, "UP:");
 displayBigTextLine(5, "CLASSIC");
 displayBigTextLine(8, "DOWN:");
 displayBigTextLine(10, "BALLS OF FURY");

 while(!getButtonPress(buttonAny))
 {}
 if(getButtonPress(buttonUp))
 {
 gameMode = "Classic";
 }
 else if(getButtonPress(buttonDown))
 {
 gameMode = "Balls of Fury";
 }
 while(getButtonPress(buttonAny))
 {}

 eraseDisplay();

 //starting the game
 ballLaunch(ballLaunchAccel, ballLaunchDecel, ballLaunching, ballsLaunched,
 gameMode); //starts launcing ball(s)
 setFieldMotors(motorPower); //activates field motors
 displayBigTextLine(5, "score: %d", score); //displays current score
 time1[T1] = 0; //setting the game timer to 0

 //during the game
 if(gameMode == "Classic")
 {
 ballCount = 1;
 displayBigTextLine(8, "Ball count: %d", ballCount);

 while(ballCount > 0)
 {
 //updates score
 if(time1[T1] >= 5000)
 {
 time1[T1] = 0;
 score += 10;
 displayBigTextLine(5, "score: %d", score);

 //releases new ball, changes speed/direction of field motors
 if(score % 60 == 0)
 {
 setFieldMotors(motorPower);
 if(ballCount < NUM_BALLS)
 {
 ballLaunchAccel = true;
 ballLaunching = true;
 ballCount++;
 }
 displayBigTextLine(8, "Ball count: %d", ballCount);
 time1[T3] = 0;
 }

 30

 }

 //controls flippers
 flippers(leftFlipperRaised, rightFlipperRaised);

 //checks for ultrasonic ball drop
 ultrasonicCheck(ballLost, ballCount);

 //Checks for manual ball decrement
 ballCountUpdate(ballCount, downButtonPressed, upButtonPressed);

 //manages ball launching system
 if(ballLaunching)
 {
 ballLaunch(ballLaunchAccel, ballLaunchDecel, ballLaunching,
 ballsLaunched, gameMode);
 }
 }
 //updates score based on extra time remaining
 score += time1[T1]/500;

 }else if(gameMode == "Balls of Fury")
 {
 ballCount = NUM_BALLS;
 displayBigTextLine(8, "Ball count: %d", ballCount);

 time1[T4] = 0;

 while(ballCount > 0 && time1[T1] < 61000)
 {
 //manages ball launching system
 if(ballLaunching)
 {
 ballLaunch(ballLaunchAccel, ballLaunchDecel, ballLaunching,
 ballsLaunched, gameMode);
 }

 //updates the score & changes field motor powers
 if(time1[T4] > 10000)
 {
 score += ballCount * ballValue;
 ballValue *= 2;
 setFieldMotors(motorPower);
 displayBigTextLine(5, "score: %d", score);
 time1[T4] = 0;
 }

 //controls flippers
 flippers(leftFlipperRaised, rightFlipperRaised);

 //checks for ultrasonic ball drop
 ultrasonicCheck(ballLost, ballCount);

 //Checks for manual ball decrement
 ballCountUpdate(ballCount, downButtonPressed, upButtonPressed);
 }

 }

 //ending the game
 //stop all motors
 motorPower = 0;
 setFieldMotors(motorPower);
 motor[BLM] = motor[BRM] = 0;

 //reset servo positions

 31

 setServoPosition(SERVOS, SERVO_L, INIT_POSITION);
 wait1Msec(100);
 setServoPosition(SERVOS, SERVO_R, INIT_POSITION);
 wait1Msec(100);

 eraseDisplay();

 //read in prev top 100 scores from file
 TFileHandle fin;
 if(gameMode == "Classic")
 {
 bool fileOkay = openReadPC(fin, "highscoreClassic.txt");

 }else if(gameMode == "Balls of Fury")
 {
 bool fileOkay = openReadPC(fin, "highscoreBOF.txt");
 }

 int topScores[NUM_SCORES];
 int prevTopScore = 0;

 for(int count = 0; count < NUM_SCORES; count++)
 {
 readIntPC(fin, prevTopScore);
 topScores[count] = prevTopScore;
 }

 //sorts the current score into the array if it's greater than any top score
 int rank = sortScore(score, topScores);

 //writes the updated score list into file
 TFileHandle fout;
 if(gameMode == "Classic")
 {

bool fileOkay2 = openWritePC(fout, "highscoreClassic.txt");

 }else if(gameMode == "Balls of Fury")
 {
 bool fileOkay2 = openWritePC(fout, "highscoreBOF.txt");
 }

 for(int count = 0; count < NUM_SCORES; count++)
 {
 writeLongPC(fout, topScores[count]);
 writeEndlPC(fout);
 }

 //displays the obtained score and the rank of that score
 displayBigTextLine(0, "Score: %d", score);

 if(rank == -1)
 {
 displayBigTextLine(3, "u r pathetic");
 }
 else
 {
 displayBigTextLine(3, "You placed %d !", rank);
 if(rank == 1)
 {
 displayBigTextLine(6, "HIGHSCORE!");
 }
 }

 wait1Msec(3000);

 //shows the top 5 scores

 32

 eraseDisplay();
 displayBigTextLine(0, "Leaderboard");
 for(int count = 0; count < 5; count++)
 {
 displayBigTextLine(2*count+3, "%d: %d", count + 1, topScores[count]);
 }

 wait1Msec(5000);
}

 33

Appendix B1 – flippers Function Flowchart

Figure 15: flippers function flowchart

 34

Appendix B2 – ultrasonicCheck Function Flowchart

Figure 16: ultrasonicCheck function flowchart

 35

Appendix B3 – ballCountUpdate Function Flowchart

Figure 17: ballCountUpdate function flowchart

 36

Appendix B4 - ballLaunch Function Flowchart

Figure 18: ballLaunch function flowchart

 37

Appendix B5 – ballRelease Function Flowchart

Figure 19: ballRelease function flowchart

 38

Appendix B6 – setFieldMotors Function Flowchart

Figure 20: setFieldMotors function flowchart

 39

Appendix B7 – sortScore Function Flowchart

Figure 21: sortScore function flowchart

